
Things to learn from

HPy Team
hpy-dev@python.org

Python Core Dev Sprint – C API Summit
October 9, 2023

enable more performance optimizations in CPython

and at the same time

 provide a C extension API that can compile to
- a stable ABI
- an implementation-specific fast ABI

Motivation for this Talk

Concepts used in HPy that can help CPython
(i.e. if you ever do break the ABI, these are the things we’d like you to consider doing)

1. [API] Opaque handles

2. [API] Local vs non-local handles

3. [ABI] Explicit context argument with function table

Opaque Handles

● There can be several distinct handles denoting the same object

HPy y = HPy_Dup(x);

x == y;

HPy_Close(y);

// may return a different handle

// compiler error

// matches handle that was dup’d (scoped)

Opaque Handles

● There can be several distinct handles denoting the same object

HPy y = HPy_Dup(x);

HPy_Is(x, y);

HPy_Close(y);

Opaque Handles

● There can be several distinct handles denoting the same object

● HPy’s CPython implementation just stores PyObject* in it

typedef struct _HPy_s { PyObject* _i; } HPy

HPy y = HPy_Dup(x);

HPy_Is(x, y);

HPy_Close(y);

Opaque Handles

● There can be several distinct handles denoting the same object

● HPy’s CPython implementation just stores PyObject* in it

typedef struct _HPy_s { PyObject* _i; } HPy

HPy y = HPy_Dup(x);

HPy_Is(x, y);

HPy_Close(y);

PyObject *y = x; Py_INCREF(y);

x == y;

Py_DECREF(y);

Implementation specific ABI

Opaque Handles

● There can be several distinct handles denoting the same object

● HPy’s CPython implementation just stores PyObject* in it

● BUT we can now experiment with other GC strategies (e.g. WASM, moving)
○ With indirection GC can move the object
○ This indirection is why handles are sometimes considered slower [1]

typedef struct _HPy_s { PyObject* _i; } HPy

HPy y = HPy_Dup(x);

HPy_Is(x, y);

HPy_Close(y);

PyObject *y = x; Py_INCREF(y);

x == y;

Py_DECREF(y);

[1] Nanjekye J., et al., Towards Reliable Memory Management for Python Native Extensions (ICOOOLPS 2023).

Implementation specific ABI

Opaque Handles ⇒ tagged pointers

● Can also do NaN boxing, list storage strategies, etc [https://doi.org/10.1145/2544173.2509531]

HPy HPy_AddImpl(HPy a, HPy b) {

 if (isTaggedInt(a) && isTaggedInt(b)) {

 return tagInt(untagInt(a) + untagInt(b));

 } else {

 return py2h(PyNumber_Add(a._i, b._i));

 }

}

https://doi.org/10.1145/2544173.2509531

Local vs Non-local Handles

void * HPy_AsStruct(HPy x) { return (void *)x._i; }

void setName(HPy hpt, HPy name) {

 MyPerson *pt = (MyPerson *)HPy_AsStruct(hpt);

 pt->name = HPy_Dup(name); // BAD! Handles should be short-lived

}

Local vs Non-local Handles

● Local handles are scoped
○ Only valid in the context of the current Python->C call
○ Implies: thread local
○ Arena (de-)allocations: Fast, good for NOGIL

● Non-local handles are explicit
○ Non-local handles are known, runtime can trace them w/o tp_traverse

=> e.g. some GC (Java, WASM) cannot call into tp_traverse

void * HPy_AsStruct(HPy x) { return (void *)x._i; }

void setName(HPy hpt, HPy name) {

 MyPerson *pt = (MyPerson *)HPy_AsStruct(hpt);

 pt->name = HPy_Dup(name); // BAD! Handles should be short-lived

}

Local vs Non-local Handles

● Local handles are scoped
○ Only valid in the context of the current Python->C call
○ Implies: thread local
○ Arena (de-)allocations: Fast, good for NOGIL

● Non-local handles are explicit
○ Non-local handles are known, runtime can trace them w/o tp_traverse

=> e.g. some GC (Java, WASM) cannot call into tp_traverse

void * HPy_AsStruct(HPy x) { return (void *)x._i; }

void setName(HPy hpt, HPy name) {

 MyPerson *pt = (MyPerson *)HPy_AsStruct(hpt);

 HPyField_Store(hpt /*owner*/,

 &pt->name /*location*/, name /*handle*/);

}

● Local handles are scoped
○ Only valid in the context of the current Python->C call
○ Implies: thread local
○ Arena (de-)allocations: Fast, good for NOGIL

● Non-local handles are explicit
○ Non-local handles are known, runtime can trace them w/o tp_traverse

=> e.g. some GC (Java, WASM) cannot call into tp_traverse

MyPerson *pt = (MyPerson *)hpt;

PyObject *tmp = pt->name; Py_INCREF(name);

pt->name = name; Py_XDECREF(pt->name);

Local vs Non-local Handles

void * HPy_AsStruct(HPy x) { return (void *)x._i; }

void setName(HPy hpt, HPy name) {

 MyPerson *pt = (MyPerson *)HPy_AsStruct(hpt);

 HPyField_Store(hpt /*owner*/,

 &pt->name /*location*/, name /*handle*/);

}

Implementation specific ABI

Explicit Context Argument

● It can carry call-specific information
○ Including interpreter state
○ Provide handles for built-in objects like None

What Petr said…

Let’s talk about ABI stability

Explicit Context Argument with Function Table

● Why Function table? More flexibility than native linker
○ Specialized code: debug mode, tracing, … (instead of if-else-if cascade in the entry-points)
○ Runtime generated code: inline caches, dynamic tracing, …
○ Embedded systems without linker or with non-standard linker

● Why in the context?
○ Specialized code per call-site

■ Quickened call bytecode e.g. passes context with specializing HPy_CallMethod with
inline cache to native extension call target => “JIT into C extensions”

○ Multiple incompatible API versions in one process
○ Easier to forbid calling (some) API functions

■ Forbid some API calls e.g. in tp_traverse, any call in random C threads (...)
■ Debug mode changes the pointers on purpose to detect misbehaving code

ABI stability with Function Table

typedef struct _HPy_s { PyObject* _i; } HPyHPy y = HPy_Dup(x);

HPy_Is(x, y);

HPy_Close(y);

PyObject *y = x; Py_INCREF(y);

x == y;

Py_DECREF(y);

Implementation specific ABI

typedef struct _HPy_s { intptr_t _i; } HPy

HPy y = ctx->Dup(ctx, x);

ctx->Is(ctx, x, y);

ctx->Close(ctx, y);
Universal (stable) ABI

Debug mode with Function Table

> raise HPyLeakError(leaks)
E hpy.debug.leakdetector.HPyLeakError: 10 unclosed handles:
E <DebugHandle 0x5606bb9f81b0 for 1 * foo>
E Allocation stacktrace:
E python3.8/site-packages/hpy/universal.cpython-38d-x86_64-linux-gnu.so(debug_ctx_New 0x60) [0x7f4af12793c1]
E kiwisolver.hpy.so(0x67fc5) [0x7f4af0eaffc5]
E kiwisolver.hpy.so(kiwisolver::new_from_global(_HPyContext_s*, HPyGlobal, void*) 0x55) [0x7f4af0eb236f]
E kiwisolver.hpy.so(_HPy_s kiwisolver::BinaryMul::operator()<kiwisolver::Variable*, double>(_HPyContext_s*,
kiwisolver::Variable*, double, _HPy_s, _HPy_s) 0x4e) [0x7f4af0ebbc4e]
E kiwisolver.hpy.so(_HPy_s kiwisolver::BinaryAdd::operator()<kiwisolver::Variable*, double>(_HPyContext_s*,
kiwisolver::Variable*, double, _HPy_s, _HPy_s) 0x5e) [0x7ff3e41cdba4]

template<> inline
HPy BinaryAdd::operator()(HPyContext *ctx, Variable* first, double second, HPy h_first, HPy h_second)
{
 HPy temp = BinaryMul()(ctx, first, 1.0, h_first, HPy_NULL);
 if(HPy_IsNull(temp))

return HPy_NULL;
 return operator()(ctx, Term_AsStruct(ctx, temp), second, temp, h_second);
}

$ HPY=debug pytest -s -k test_constraint_creation py/tests/test_constraint.py

Backup slides
(there are details and optimizations there)

 Status of these ideas in HPy: We think it works

Benchmark results CPython 3.10 C API

Benchmark results CPython 3.10 HPy compiled to CPython C ABI

Benchmark results CPython 3.10 HPy compiled to Universal ABI

Complete ports: kiwisolver, ujson,
piconumpy

Partial ports: matplotlib, cython,
numpy, pillow

More results:
https://github.com/hpyproject/hpy/wiki/dev-call-20220407

Ports at: https://github.com/orgs/hpyproject/repositories

https://github.com/hpyproject/hpy/wiki/dev-call-20220407
https://github.com/orgs/hpyproject/repositories

 Explicit Context Argument with Function Table

● The Debug Context

static inline HPy HPyLong_FromLong(HPyContext *ctx, long x) {
 return ctx->ctx_Long_FromLong(ctx, x);
}

DHPy debug_ctx_Long_FromLong(HPyContext *dctx, long value) {

HPy uresult = HPyLong_FromLong(get_info(dctx)->uctx, value);

return DHPy_open(dctx, uresult);

}

HPy ctx_Long_FromLong(HPyContext *ctx, long value) {

 return _py2h(PyLong_FromLong(value);

}

1 2

3

 Explicit Context Argument with Function Table

● In HPy Universal ABI, the context is the function table AND
● It can carry call-specific information

○ Including interpreter state
○ Provide handles for built-in objects like None

● You can do decoration
○ HPy’s debug/trace mode decorates functions to e.g. enforce contracts

● You can even do profiling
○ E.g. profile operands of binary operations (HPy_Add) or targets of calls (HPy_CallMethod)
○ Replace function pointer with a specialized function
○ Store specialized context near quickened call bytecode to HPy extension function

 Explicit Context Argument

● Why do we need a context arg?
○ For ABI stability. For better performance. For better debugging.

● Can have ABI stability w/o a context?
● Basically yes, e.g. NumPy or SDL Library [1] do that

○
○ They use a (hidden) global function table
○ An env variable allows to specify the ABI

● BUT
○ You anyway need a function table
○ For SDL, the table is global → one ABI per process
○ With a context, there can be an ABI per call

● Conclusion
○ Possible, way more complex
○ Passing ctx as first arg is easy and gives best performance

[1] https://www.reddit.com/r/linux_gaming/comments/1upn39/sdl2_adds_dynamic_api_magic_to_allow_updating_it/?rdt=61251

https://www.reddit.com/r/linux_gaming/comments/1upn39/sdl2_adds_dynamic_api_magic_to_allow_updating_it/?rdt=61251

Concepts used in HPy that can help CPython
(i.e. if you ever do break the ABI, these are the things we’d like you to consider doing)

● Opaque handles
○ For Tagged and tagged values
○ For storage strategies

● Explicit context argument with function table
○ For explicit API contracts (debug context)
○ For profiling and specialization

● Local vs global handles that are not pointers to mutable
objects
○ For alternative GC strategies (moving GC, WASM,

request/response, arena collection)
○ For scoped lifetime management (nogil)

 How do Handles Affect the API?

● Opaque
○ No direct memory access like ((PyObject *)obj)->ob_type

● No identity
○ You can’t compare handles
○ You can’t use them as unique key for objects

● Short-lived (scope: call)
○ Storing them in global vars is (in general) incorrect
○ Therefore: HPyGlobal, HPyField

HPy h0 = HPyUnicode_FromString(...);
HPy h1 = HPy_Dup(ctx, h0);
memcmp(h0, h1, sizeof(HPy)) != 0
hash(h0) != hash(h1)

static HPyGlobal g0;

void foo(HPyContext *ctx) {
 HPyGlobal_Store(ctx, &g0, ctx->h_None);
}

 Local vs Global Handles: Better for NOGIL

● Correct us if we’re wrong but _Py_INCREF’s complexity exploded, right?
○ Was formerly very simple and fast
○ With NOGIL, it is complicated and potentially expensive
○ If objects are shared, there will be a call

static _Py_ALWAYS_INLINE void
_Py_INCREF(PyObject *op)
{
 uint32_t local = _Py_atomic_load_uint32_relaxed(&op->ob_ref_local);
 if (_Py_REF_IS_IMMORTAL(local)) {
 return;
 }

 if (_PY_LIKELY(_Py_ThreadLocal(op))) {
 local += (1 << _Py_REF_LOCAL_SHIFT);
 _Py_atomic_store_uint32_relaxed(&op->ob_ref_local, local);
 }
 else {
 _Py_IncRefShared(op);
 }
}

 Local vs Global Handles: Better for NOGIL

● In HPy, handles are scoped
○ Only valid in the context of the current call
○ Implies: thread local (and even stricter)

● Possible approach for CPython
○ The object pointer is aligned (let’s assume to 8 bytes)
○ Handles are opaque → code does not directly dereference the pointer
○ The 3 bits can be used for an index into a local ref count table

 Local vs Global Handles

● You can use any lifetime management
● Reference counting

○ That’s what we do in HPy’s CPython impl
● Any tracing/moving/whatsoever garbage collector

○ That’s what we do in PyPy and GraalPy
○ WASM GC?

● How can that work?
○ Well, the contract is more strict.
○ A Handle h denotes an object o but not vice versa
○ There can be several h0, h1, h1 denoting the same object o
○ On CPython: HPy handle is a PyObject * but with more guarantees

● A handle does neither expose the object’s location nor its identity
○ Move the object as you want or leave it there, it does not matter

 Handles and NaN Boxing

● GraalPy implements that
● Handle is an index for a Java array → signed 32-bits
● Number conversion calls are for free (in many cases)

○ HPyLong_(From|As)(U)Int(32|64)_t

○ HPyLong_(From|As)S(s)ize_t

○ HPyFloat_(From|As)Double

● Getting the type of boxed values is super fast
○ There’s room for a few interesting tags: tagged short strings, floats, ints, single element tuples

● Transparently extends the benefits of list storage strategies to C extensions
(even on CPython) [https://doi.org/10.1145/2544173.2509531]

https://doi.org/10.1145/2544173.2509531

 Opaque Handles ⇒ tagged ptrs, NaN boxing

● You can do NaN boxing, tagging, list storage strategies [https://doi.org/10.1145/2544173.2509531]

○ On 64-bit architecture, HPy has 64-bits width
○ IEEE 754

■ 64-bit floats are NaN if all of exponent bits are 1 and mantissa > 0,
the remaining 51 bits don’t matter

https://piotrduperas.com/posts/nan-boxing

HPy HPy_Add(HPy a, HPy b) {

 if (isBoxedInt(a) && isBoxedInt(b)) {

 return boxInt(unboxInt(a) + unboxInt(b));

 } else {

 return PyNumber_Add(a._i, b._i);

 }

}

https://doi.org/10.1145/2544173.2509531

Performance vs ABI stability
More performant More stable

● Intrinsic trade-off
● Different extensions/users, different needs
● Single API, multiple ABIs

